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Signaux Analogiques

• Def: Signaux Analogiques ≡ continus en temps et 
en amplitude

• Ex: Signal sinusoïdal: x(t) = A cos(ωot + φ) avec

• A: l’amplitude [V] ou [A], 

• φ: la phase [rad ou deg]

• ωo: la pulsation ou vitesse 
de rotation [rad/s]. 

௢

మഏ

೅ ೚

avec T la période [s] et fo fréquence [Hz]
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Représentation Complexe
• On associe à x(t) = A cos(ωot + φ) une grandeur complexe

x(t) = 𝒋 ωot + φ ωot + φ ωot + φ
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Im
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Asin(ϕ)

Acos(ϕ)

𝜙

A

• Module: A = |x(t)| 
• Argument: o φ = arg (x(t))

୍୫(୶(୲))
ୖୣ(୶(୲))

ω [rad/s]
f [Hz]

A

ωo

Module

Représentation fréquentielle

Leonhard Euler (1707-1783)
mathématicien Suisse

Représentation vectorielle



• La représentation complexe permet une simplification significative des
calculs ( Calculs trigonométriques, dérivation, intégrale et donc équations
différentielles se transforment en calculs algébriques simples).

• Ex: soit le signal V(t) = 𝟎
ωt

Intérêt de la représentation complexe

଴
௝ఠ௧

଴
௝ఠ௧

Derivation  ×jw 

Integration × 

t

V
dV/dt
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• Notation Complexe : x(t) = ௝ ωt et y(t) = ௝ ωtାφ

 l’équation devient:  ou encore  
𝒚 𝒕

𝒙 𝒕

𝟏

𝟏ା𝒋𝝎𝝉

 | ௝ rg (ு ௝ఠ ) ௝ ωt

 avec      
𝟏

𝟏ା𝒋𝝎𝝉
; | = 

𝟏

𝟏ା(𝝎𝝉)𝟐
; rg ( ) = − arctg ( )

ଵ

ଵା(ఠఛ)మ
௝ ωt − arctg (ఠఛ)
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Intérêt de la représentation complexe:

y
𝟏

𝟏ା(𝝎𝝉)𝟐
t - arctg ( ))

• Ex: y
𝒅𝒚 𝒕

𝒅𝒕

 On connait x(t)= X cos(ωt) et τ. On veut déterminer y(t) = Y cos(ωt + φ)?

C.à.d. Y  ? fct (X, ω, τ )          et            φ ? fct (ω, τ )

 L’équa diff devient: Y cos(ωt + φ) - τ ω sin(ωt + φ) = X cos(ωt) (résolution fastidieuse  )



Éléments passifs linéaires en régime harmonique

Electronique I - Adil KOUKAB 7

Résistance

= R I(t) 

Capacité

I(t) = C 

Inductance

U(t) = L 



• Intérêt: Généralisation de la loi d’Ohm “U = Z x I” pour C et L

I(t) = C 

• Inductance

U(t) = L 

Impédances complexes et Loi d’Ohm généralisée
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• Condensateur

Avec l’impédance complexe Zc = = 

Avec l’impédance complexe ZL = = 

Rq: Zc et ZL sont appelées aussi réactances et notées resp. Xc et XL.

CI

U

LI

U

= (jwC) U  U = Zc x I

= (jwL) I  U = ZL x I



En régime harmonique : U = I Z ou I = 

 ZR = R RESISTANCE

 ZC = CONDENSATEUR

 ZL = INDUCTANCE

Connexions

• Série : Zeq = Z1 + Z2 + … + Zn

• Parallèle: 1/Zeq = 1/Z1 + 1/Z2 + … + 1/Zn

Loi d’Ohm généralisée
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l’analyse harmonique pour toutes les fréquences

L’analyse fréquentielle ou réponse en fréquence

correspond à

(ou pulsations  w= 2p f)
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Analyse fréquentielle des circuits linéaires



t

S1(t)

t

S2(t)

t

S3(t)

f

S1(jf) 

f

S2(jf) 

f

S3(jf) 



t

St(t)

f

St(jf) 
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f [Hz]

Amp

Harmoniques
1 2 3 4 5 6 7  …                                             25

0.9Hz 1.8Hz 2.7Hz

t[s]

Amp

22.5Hz

Généralisation: signaux analogiques quelconques

Série de Fourier: Tout signal périodique
est décomposable en signaux
sinusoïdaux.

Si le signal n’est pas périodique c’est la
Transformée de Fourier ou Laplace
qui permet la conversion temps-
fréquence.

3.6Hz

… 



ଶ

ଵ
Fonction de transfert:

U1 U2

Ampli & 
Filtrage

Conditionnement analogique ≡ Amplification et filtrage
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U1(t) = ωt U2(t) = ωt + φ

|H(jω)|

Ampli : Gain cst Filtrage

QRS

ECG
50Hz

P,T

f [Hz]

Amp



Souvent définie à sortie ouverte

Peut être différente si la sortie est chargée !

మ
ଵ ଵ

୨ఝభ

ଶ

ଵ

Module:

ଶ ଵ
Phase:

ଶ

ଵ

(également gain d’un ampli)

Fonction de transfert en tension:

U1 U2

Fonction de transfert en tension
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୤
ଶ

ଵ

Fonction de transfert trans-impédance:

U2

I1

Souvent définie à sortie 
ouverte
Peut être différente si la sortie est chargée !

Impédance de transfert ou trans-impédance
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Souvent définie à sortie court-circuitée

Peut être différente si la sortie est chargée !

I1 I2

୧
ଶ

ଵ
Fonction de transfert:

Fonction de transfert en courant
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Souvent définie à sortie court-circuitée
Peut être différente si la sortie est chargée !

୤
ଶ

ଵ

Fonction de transfert:

I2

U1

Admittance de transfert ou transadmittance
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Fonction de transfert:

U1
U2

RI

I
1

jωC

Exemple de Fonction de transfert en tension
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C.à.d.  si U1(t)= Re(U1) =  U1cos(ωt) 

Question: Comment varie le Module (gain) et la phase en fonction de la fréquence?  

Méthode asymptotique  Diagramme de Bode

U2(t) = 𝟏 t + Arg 

𝟐

𝟏

𝒄

𝒄

= 𝟏

𝟏ା(𝝎𝑹𝑪)𝟐 𝟏 t – arctg(



Diagramme de Bode en amplitude
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Pour cela on suit les étapes suivantes:
1. Evaluer H(jw) du circuit
2. Ecrire H(jw) sous sa forme canonique
3. Expression de |H(jw)| en décibels (dB): |H(jw)|dB.
4. Tracer ses asymptotes |H(jw)|dB en fct de Log(w)

• C.à.d. la pulsation (resp. fréquence) est représentée sur une
échelle logarithmique.

Définition: Diagramme de Bode est une technique
permettant une représentation graphique simple et rapide
du comportement fréquentiel asymptotique d'un système
c.à.d. de sa fonction de transfert.



|H(jw)| = 1 |H(jw)| dB = 0 dB

|H(jw)| = 10 |H(jw)| dB = 20 dB

|H(jw)| = 100 |H(jw)| dB = 40 dB

|H(jw)| = 1000 |H(jw)| dB = 60 dB

|H(jw)| = 0.1 |H(jw)| dB = -20 dB

|H(jw)| = 0.01 |H(jw)| dB = -40 dB

|H(jw)| = 0.001 |H(jw)| dB = -60 dB
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Pourquoi le décibel ( ) ?

Amplification

𝟐

Atténuation

𝟐

x106 +120 dB

Avantage 1: réduire l’étendue de l’échelle

𝟐

𝟏
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Pourquoi en fct de Log(ω) ?

F [Hz]
ω [rad/s]

1Hz 10Hz 20Hz 30Hz

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz 1MHz

40Hz 50Hz 60Hz

Avantage: Comprimer une échelle tout en maintenant sa lisibilité



Quelques valeurs à retenir
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• 𝟐

𝟏

𝟐

𝟏

• 𝟐

𝟏

𝟐

𝟏

• 𝟐

𝟏

𝟐

𝟏

• 𝟐

𝟏

𝟐

𝟏

• 𝟐

𝟏

𝟐

𝟏



H(jw) = H1(jw) .  H2(jw)

|H(jw)| dB = |H1(jw)| dB + |H2(jw)| dB

Avantage 2: faciliter le calcule et représentions graphique 
(plus aisé d’additionner que de le multiplier deux graphes) 

Electronique I - Adil KOUKAB 24

Autre avantage du décibel ( ) ?



Fonction de transfert sous Forme Canonique

H(jw) =  K 

j
w

wzo
( 1 + j

w
wz1

) ( 1 + j
w

wz2
)...( 1 + j

w
wzk

)

j
w

wpo
( 1 + j

w
wp1

) ( 1 + j
w

wp2
)...( 1 + j

w
wpl

)

K est une constante.

wzi (i=0,k) zéro de la fonction de transfert.

wpi (i=0,l) pôle de la fonction de transfert.
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Forme canonique et diagramme de Bode

wj
w
zo wz1

( 1 + j
w

) wz2
( 1 + j

w
)

w
jwpo

w
( 1 + jwp2

)...
w

( 1 + jwpn
)

H(jw) =  K 

..( 1 + j
w

wzk
)

w
( 1 + jwp1

)
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𝒅𝑩
= 𝒊 𝒅𝑩௜ = 𝒅𝑩

𝝎

𝝎𝒛𝟎 𝒅𝑩

𝝎

𝝎𝒛𝟏 𝒅𝑩
+ … +  

𝝎

𝝎𝒛𝒌 𝒅𝑩

+ 𝟏
𝒋

𝝎

𝝎𝒑𝒐 𝒅𝑩

+ 𝟏
𝟏ା𝒋

𝝎

𝝎𝒑𝒐 𝒅𝑩

+ … + 𝟏
𝟏ା𝒋

𝝎

𝝎𝒑𝒏 𝒅𝑩

Conclusion: Si on connait le digramme de Bode des fonctions
élémentaires 𝒊 , nous pouvons en déduire celui de

par simple sommation.



|H (jw)| dB
w

=  20 Log( wzo
) = 20 Log( w) - 20 Log(wzo)

Y = X20 + C

-20 dB

Electronique I - Adil KOUKAB 27

fonctions élémentaires

𝑯 𝒋𝝎
𝒅𝑩

10ωzo

ω [rad/s]
1 10 100 1K

20 dB

ωzo
(échelle Log)

0 dB
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10 100 1000
(log)
w en rad/s

20 dB

-20 dB

wpo

𝑯 𝒋𝝎
𝒅𝑩

-
𝑷𝟏

 Symétrie / l’axe des x



La fonction 
à tracer

Valeur particulière
(w = wz1)

Lim H(jw) = 
w

w
j

wz1
(Im)

Lim H(jw) = 1
w0

(Re)
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𝒛𝟏

= 3 dB

1ère asymptote
HF, w

2ème asymptote
DC, w0



3dB
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(log)
w en rad/s

1 10 100 1000wz1

𝑯 𝒋𝝎
𝒅𝑩

20 dB / décade

w0

𝟏 + 𝒋
𝝎

𝝎𝒛𝟏 𝒅𝑩
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-
𝑷𝟏

 Symétrie / l’axe des x

w0

𝟏

𝟏 + 𝒋
𝝎

𝝎𝑷𝟏 𝒅𝑩

-3dB (log)
w en rad/s

1 10 100 1000

𝑯 𝒋𝝎
𝒅𝑩



Si  |K| > 1, alors  |K|dB > 0

K=1020 dB

Si  |K| < 1, alors  |K|dB < 0

-20 dB K=0.1
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1 10 100 1000 (log)
w en rad/s

𝑯 𝒋𝝎
𝒅𝑩



Exemple

H(jw) =  
2

j
w
w

w
( 1 + jw1

) ( 1 + j
w
w2

)

w2 = 100 rad/s
w1 = 1000 rad/s

+ 20 dB / décade 1

- 20 dB / décade

3 2
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𝑯 𝒋𝝎
𝒅𝑩

10 100 1000 10000

(log)
w en rad/s

20 dB

-20 dB

w2 w1

𝑯 𝒋𝝎
𝒅𝑩

(log)
w en rad/s

20 dB

-20 dB

w2 w1

𝑯 𝒋𝝎
𝒅𝑩

-3dB



Diagramme de Bode - argument ou phase

H(jw) =  K 

j
w

wzo
( 1 + j

w
wz1

) ( 1 + j
w

wz2
)...( 1 + j

w
wzk

)

j
w

wpo
( 1 + j

w
wp1

) ( 1 + j
w

wp2
)...( 1 + j

w
wpl

)

Arg(H(jw)) = Arg( K ) + 

Arg(j
w

wzo
 )  +  Arg(1 + j

w
wz1

 )  +  Arg(1 + j
w

wz2
 )  +...+  Arg(1 + j

w
wzk

 ) +  

Arg(
1

j
w

wpo

 )  +  Arg(
1

 1 + j
w

wp1

 )  +  Arg(
1

 1 + j
w

wp2

 )  +...+  Arg(
1

 1 + j
w

wpl

 )   
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Argument de H(jw) =  K  = constante

Arg(K) =Arctg (Im/Re) =  Arctg (0)

K < 0180o = ± p, pour  K < 0


1 10 100 1000 (log)
w en rad/sK > 00o
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= 0, pour  K > 0



Arg(H(jw)) = p/2  ou 90o

90o



1 10 100 1000 (log)
w en rad/s
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Im/Re  +∞



Arg(H(jw)) = -p/2  ou -90o

-90o



1 10 100 1000 (log)
w en rad/s
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Im/Re  -∞



wArg(H(jw)) =Arctg ( w
z1

)

Lim H(jw) = 
w

w
j

wz1
(Im , Arg = p/2)

Lim H(jw) = 1
w0

(Re, Arg = 0)

Valeur particulière
(w = wz1) Arg(H(jw)) =Arctg (1)= 45o = p/4
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1ère asymptote
HF, w

2ème asymptote
DC, w0



Approximation autour de w=wz1:

On approxime souvent le diagramme des phases par une
droite partant d'un déphasage nul pour w=0.1wz1 pour
atteindre un déphasage de 90o en w=10wz1.

90
o

0o



0.1wz1 wz1 10 wz1

45o

5.7o

(log)
w en rad/s
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Arg(H(jw)) = - Arg(1 + j
w

wp1
) 

90o

0o


0.1wp1 wp1 10wp1

45o

(log)
w en rad/s

5.7o

-

-
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 Symétrie / l’axe des x



H(jw) =  
2

j
w
w

w
( 1 + jw1

) ( 1 + j
w
w2

)

w2 = 100 rad/s
w1 = 1000 rad/s

Exemple

10 100 1000 10000
(log)
w en rad/s

w
2

1

2

w
1

3


90

o

-90o
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10 100 1000 10000
(log)
w en rad/s

w
2

1

2

w
1

3


90

o

-90o
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Circuits RC du premier 
ordre



C

R1

R2

R3

R4
V1 C

R

V

Description
• R, C déterminent:

– la limite de la réponse en fréquence des amplificateurs,
– la période ou la fréquence d'oscillation de générateurs 

de signaux carrés ou sinusoïdaux,
– la caractéristique des filtres électroniques,
– la limitation de la vitesse de commutation des circuits 

logiques.
• Exemple de simplification
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Thévenin



Circuits RC passe-bas du premier ordre

Déf: Un filtre passe-bas est un filtre qui laisse passer les basses 
fréquences et atténue les hautes fréquences, c'est-à-dire les 
fréquences supérieures à la fréquence de coupure.



R
CU1 U2

H =
Uଶ

Uଵ
=

1
jωC

R+
1

jωC

=
1

1+jωRC
=

1

1+
jω
ω଴

wo : pulsation de coupure:
ω଴ =

1

RC

fo : fréquence de coupure:
f଴ =

ω଴

2π
=

1

2πRC

H [dB]

- 20 dB / décade
-3dB

w0=1/RC w [rad/s]
(log)

0°

f

-45°

-90°

w0=1/RC w [rad/s]
(log)

Réponse en fréquence d’un passe-bas 
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Circuits RC passe-haut du 1er  ordre

Déf: Un filtre passe-haut est un filtre qui laisse passer les hautes 
fréquences et atténue les basses fréquences, c'est-à-dire les 
fréquences inférieure à la fréquence de coupure.



H =
Uଶ

Uଵ
=

R

R+
1

jωC

=
jωRC

1+jωRC
=

j
ω

ω଴

1+
jω
ω଴

wo : pulsation de coupure:
ω଴ =

1

RC

fo : fréquence de coupure:

f଴ =
ω଴

2π
=

1

2πRC

H [dB]

20 dB / décade

-3dB

w0=1/RC
w [rad/s]
(log)

0°

f

45°

90°

w0=1/RC
w [rad/s]

(log)

Réponse en fréquence d’un passe-haut 

U1
U2R

C
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